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Energy can be transferred from one place to another through the
bulk motion of matter. A running stream of water carries energy with
itself as it moves along. There is another way of transferring energy in
which there is no bulk motion of matter. This is by means of ‘waves’.
The waves are of three types—mechanical waves, electromagnetic waves
and matter waves.

(i ) Mechanical waves can be produced and propagated only in
those material media which possess elasticity and inertia. These waves
are also called elastic waves. Common examples include water waves,
sound waves, and seismic waves. They can exist only within a material
medium such as water, air and rock.

(ii ) Electromagnetic waves do not require any material medium
for their production or propagation. Common examples include visible
and ultraviolet light, radio and television waves, microwaves, X-rays
and radio waves. All electromagnetic waves travel through vacuum at
the same speed c given by

c = 299792458 m s–1  3 × 108 m s–1

(iii ) Matter waves are waves associated with electrons, protons and
other fundamental particles, and even atoms and molecules.

In this unit, we shall study only mechanical wave motion which will
be referred to simply as wave motion.

We can see and appreciate waves on a sea-shore. Waves can be
generated in a large basin or a tub of water by just dropping a small
stone or a pebble at the centre.

P11CH5 
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The dropped pebble creates a disturbance in the centre. The particles
of water acquire energy (both kinetic and potential). This energy is
transmitted to the next portion of the surface
layer and so on. Thus we see something
travelling outwards away from the source of
disturbance in ever-expanding concentric
circles (Fig. 5.1). In some regions, water level
is below the usual normal level. These are
called troughs. On either side of a trough,
there are regions where water is at a level
higher than the normal. These are called crests.

To sum up, the disturbance moves
progressively onwards in the form of alternate
troughs and crests as shown in Fig. 5.2. This
disturbance is called ‘wave’.

It is the disturbance which travels outwards
and not water. This fact can be verified by placing
a piece of cork or a straw on the disturbed surface
of water. It will be observed that the cork or straw
just keeps on oscillating up and down about its mean position,
sometimes riding a crest and at another time resting on a trough. The
straw or cork will not move outwards with the disturbance.

Thus, the particles of the medium certainly oscillate about their
mean positions but their permanent physical movement away from
their original positions is not there.

Wave motion may be defined as a form of disturbance which is
due to the repeated periodic vibrations of the particles of the medium
about their mean positions and the motion is handed over from one
particle to the other without any net transport of the medium.

It may also be defined as under:
Wave motion is a means of transferring momentum and energy

from one point to another without any transport of matter between the
two points.

Consider a stretched string tied at one end to a fixed support. Let
the free end of the stretched string be given an upward jerk. This will

Fig. 5.1. Water waves

NORMAL
  LEVEL

Fig. 5.2. Crests and troughs
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produce an upward kink in the string. This
upward kink travels, along the string, towards the
fixed end as shown in Fig. 5.3.

It may be noted that it is only the disturbance
given to the free end that travels along the string
and not any part of the string itself.

If the free end of the string is given one complete oscillation, then
an upward kink will be followed by a downward kink along the string.
However, if we continuously move the
free end of the string up and down, a
wave-train is observed to move, along
the string, having alternate crests and
troughs (Fig. 5.4).

(i) Wave motion is merely a form of disturbance which is produced
in the medium by the repeated periodic motion of the particles of the
medium about their mean positions.

(ii ) The energy moves outwards away from the source while the
particles of the medium continue vibrating about their mean positions
with fixed frequency. Thus, a wave represents the transfer of energy
from particle to particle. Energy can be transmitted over long distances
by wave motion.

(iii ) In order to set up wave motion in a medium, it is necessary
that the medium should possess elasticity and inertia. Due to elasticity,
the medium has a tendency to come back to its original condition. Due
to inertia, the medium can store energy. The speed of a wave in a
medium is determined by the inertia and elasticity of the medium. So,
material media (having elasticity and inertia) are capable of transmitting
mechanical waves. On the other hand, no material medium is necessary
for the propagation of electromagnetic waves.

(iv ) During their to and fro vibration about their mean positions,
the particles possess different velocities. At the extreme position, the
particle velocity is zero. The velocity increases as the particle moves
towards the mean position. At the mean position, the particle velocity
is maximum. The ‘maximum velocity’ is determined by the energy of

Fig. 5.3. Waves in strings

Fig. 5.4. Wave-train in string
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the wave. On the other hand, a wave propagates with constant velocity
in a homogeneous and isotropic medium.

To sum up, the wave velocity is very much different from the particle
velocity.

(v ) Depending upon the type of wave, the particles of the medium
may actually oscillate up and down or the particles may move towards
or against the direction of propagation of wave.

(vi ) In a wave motion, all the particles of the medium do not start
moving at once. But there is a constant phase difference between one
particle and the next. The wave advances in that direction in which it
meets particles with continuously decreasing phase. In simple words, the
movement of each particle begins a little later than that of its predecessor.

Mechanical waves can be divided into two types :
(i ) Transverse waves (ii ) Longitudinal waves.

Transverse wave motion is that wave motion in which the individual
particles of the medium execute simple harmonic motion about their mean
positions in a direction perpendicular to the direction of propagation of
the wave. The wave itself is known as transverse wave.

The water waves, the movement of a kink in a rubber string, the
movement of string in a ‘sitar’ or a violin, the movement of the membrane
of a ‘tabla’ or ‘dholak’ are all examples of transverse vibrations of these
media and transverse waves generated in those media.

A transverse wave progresses as a series of troughs and crests. Crest
is the position of maximum displacement in the positive direction i.e.,
above the line of mean position or
normal level. As an example, in
Fig. 5.5, A, C and E are crests. When
the displacement of a particle is
maximum above the line of mean
position, the particle is said to be at
the crest of a wave.

B D F

A C E
NORMAL
  LEVEL





Fig. 5.5. Transverse wave
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Trough is the position of maximum displacement in the negative
direction, i.e., below the line of mean position or normal level. In
Fig. 5.5, B, D and F are troughs. When the displacement of a particle is
maximum below the line of mean position, the particle is said to be at
the trough of a wave.

The distance between two consecutive crests or troughs is known
as the wavelength.

Transverse waves can be transmitted through solids. They can also
be set up on the surfaces of liquids. These waves cannot be transmitted
inside liquids and gases. This is due to the fact that liquids and gases
do not possess internal transverse restoring forces.

Longitudinal wave motion is that wave motion in which the
individual particles of the medium execute simple harmonic motion about
their mean positions along the direction of propagation of the wave.

Sound wave is an example of longitudinal wave.
When a longitudinal wave travels through a medium, it produces

compressions and rarefactions of the medium.
In a compression, the distance between any two consecutive particles

of the medium is less than the normal distance.
So, the density of the medium in compression is more than the

normal density.
In a rarefaction, the distance between any two consecutive particles

of the medium is more than the normal distance. So, the density of the
medium in a rarefaction is less than the normal density.

In Fig. 5.6 (i ), the positions of
different layers of air are shown
when the tuning fork is not
vibrating. However, when the
tuning fork is set into vibration, the
vibrating tuning fork sends out
alternate waves of compression (or
condensation) and rarefaction as
depicted in Fig. 5.6 (ii). When these
waves strike the ear drum of the
listener, they make the ear drum

RAREFACTION

CONDENSATION

Fig. 5.6. Positions of different layers of air
when (i ) tuning fork is not vibrating

(ii ) tuning fork is vibrating
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vibrate with the frequency of the incident waves. The distance between
the centres of two nearest condensations or rarefactions is known as
wavelength .

Again, consider the case of a
spiral spring. When it is
compressed at one end and
released, the coils of the spring
vibrate about their original
positions along the length of the
spring (Fig. 5.7). It will be observed
that coils get closer together and
move farther apart alternately. (AB
+ BC), i.e., a compression and an adjoining rarefaction constitute one
wave. Similarly, (BC + CD) or (CD + DE) or (DE + EF) constitute one wave.

The succession of waves constitutes a wave train ABCDEF.
The longitudinal wave can be transmitted through solids, liquids or

gases. In-fact, longitudinal wave is the only type of wave which can be
propagated by a gas.

    Longitudinal Waves           Transverse Waves

1. The particles of the medium 1. The particles of the medium vibrate
vibrate along the direction of at right angles to the direction of
propagation of the wave. propagation of the wave.

2. The longitudinal waves travel 2. The transverse waves travel in the
in the form of alternate com- form of alternate crests and
pressions (condensations) and troughs. One crest and one trough
rarefactions. One compression constitute one wave.
and one rarefaction constitute
one wave.

3. These waves can be formed in 3. These waves can be formed in
anymedium (solid, liquid or solids and on the surfaces of
gas). liquids only.

4. When longitudinal waves 4. When transverse waves propagate,
propagate, there are pressure there are no pressure changes in
changes in the medium. the medium.

A B C D E F

C R C R C



C=COMPRESSION R=RAREFACTION

Fig. 5.7. Formation of compressions and
rarefactions in spring
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(i ) Crest. The elevation or hump caused in a medium due to the
propagation of transverse wave through it is called crest.

(ii ) Trough. The depression or hollow caused in a medium due to
the propagation of transverse wave through it is called trough.

(iii ) Compression. A portion of the medium where an increase in
density occurs (because of reduction in volume) due to passage of
longitudinal wave in it is called compression or condensation.

(iv ) Rarefaction. A portion of the medium where a decrease in
density occurs (because of increase in volume) due to passage of
longitudinal wave in it is called rarefaction.

(v ) Wavelength (). Following are the different ways of defining
wavelength:

Wavelength of a wave is the distance travelled by the wave in a
medium during the time a particle of the medium completes one vibration.

Wavelength is the distance between any two nearest particles of the
medium vibrating in the same phase.

Wavelength is the distance between two consecutive crests or troughs.
Wavelength is the distance between two consecutive compressions or

rarefactions.
(vi ) Frequency (). Frequency of a wave is the number of complete

wavelengths travelled by the wave in one second.
(vii ) Time Period (T). Time period of a wave is the time taken by the

wave to travel a distance equal to one wavelength.

Frequency of wave,  = Frequency of vibration of the particles of the
medium

Time period of wave, T = Time period of vibration of the particles of
the medium

Time taken to complete  vibrations is 1 second.

Time taken to complete 1 vibration is 
1


 second. But this time is

equal to time period T.
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1T =


or
1
T

  or  T =1

Distance travelled by wave in time T = 

Distance travelled by wave in unit time = T


or T
v 
 or v  

So, velocity of wave is the product of frequency and wavelength of
the wave. This relation holds for longitudinal as well as transverse waves.

Hearing, like sight, touch, taste etc. is a primary sensation. The
term ‘sound’ is used in two ways. One is the sensation of hearing and
another is the physical cause which produces that sensation. When we
say that we hear the sound of chirping birds, we refer to this sensation.
But when we say that sound travels in air at a speed of 340 m s–1, we
refer to the waves of sound which are external to our system of hearing.
This is the physical sense in which we use the term ‘sound’. The other
one is the physiological sense in which we use the term ‘sound’.

Sound may be defined as the physical cause which enables us to
have the sensation of hearing.

Both sound and light are associated with wave motion. Light waves
are electromagnetic waves propagating in free space at a tremendous
speed of three lakh kilometre per second. On the other hand, sound is
a mechanical wave motion, in an elastic medium, moving with a small
speed of about 340 m s–1 nearly. Further, whereas light does not require
any medium to pass through, sound cannot travel in vacuum.

Sound is produced by the vibrations of sounding body. Our ear is
not sensitive to all such vibrations. Our range of hearing, i.e., audible
range is from 20 Hz to 20,000 Hz. Any vibration with a frequency greater
than 20,000 Hz is called an ultrasonic vibration. A bat produces ultrasonic
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vibrations which are beyond the range of
human hearing. The word ‘ultrasonic’
should not be confused with supersonic.
Any object moving with a speed greater than
the speed of sound is said to move with a
supersonic speed.

Sound requires a material medium for
propagation. If there is no material medium
between two points as in vacuum, sound
cannot travel from one point to another.

Example 1. The audible frequency range
of a human ear is 20 Hz – 20 kHz. Convert
this into the corresponding wavelength range. Take the speed of sound
in air at ordinary temperature to be 340 m s–1.

Solution. Lower limit of wavelength, min.
max .

v
 



or
1

3
min. 3

340 m s 17 10 m
20 10  Hz


   


= 17 mm

Upper limit of wavelength, 
1

max. 1
min.

340 m s m
20 s

v 


  


 = 17 m

Example 2. An observer standing at a sea-coast observes 54 waves
reaching the coast per minute. If the wavelength of the waves is 10 m,
find the velocity of the waves.

Solution. 154 s ;  =10 m
60

  

154 10 m s
60

v       9 m s–1

(i ) The speed of transverse wave in a solid is given by:

v = 



,

where  is the modulus of rigidity of the material and  is its density.

O

K

B

     TO
EXHAUST
   PUMP

Fig. 5.8. Sound does not travel
in vacuum
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(ii) The speed of transverse waves in a stretched string is given by:

Tv 


where T is the tension in the string and  is the linear mass density,
i.e., mass per unit length of the string. In SI units, T is measured in
newton and ‘’ in kg m–1.

Let diameter of a wire = D ; Density of material of wire = .
Then,   = mass per unit length of wire

= volume of unit length × density
= cross-sectional area × unit length × density

=
2D 1

2
 

   
 

 v = 2
T 2 T

DD
4


 

   
 

(iii ) Speed of longitudinal waves in solids, liquids and gases
Newton, on the basis of theoretical considerations, deduced the

following formula for the velocity of longitudinal waves in an elastic medium.
Ev 


where E is the elasticity of the medium and  is the density of the
undisturbed medium. In the case of solids, E represents the Young’s
modulus of elasticity. In the case of liquids and gases, E represents the
bulk modulus of elasticity.

(iv ) When sound waves propagate through a long thin rod, the
length of the rod decreases in the region of compression and increases
in the region of rarefaction. The only type of strain involved in this is
‘longitudinal strain’. Therefore, the only modulus of elasticity to be
considered in this case is ‘Young’s modulus of elasticity’. The velocity of
sound in a long thin rod is given by,

Yv 


Here,  is the density of the material of the rod.
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(v ) The velocity of sound in a liquid is given by

Bv 


 where B is the bulk modulus of elasticity and  is the density

of the liquid.

Example 3. Find the speed of transverse waves in a copper wire having
a cross-sectional area of 1 mm2 under the tension produced by 1 kg wt.
The relative density of copper = 8.93.
Solution. a = 1 mm2 = 10–6 m2,

 = 8.93 × 103 kg m–3

T = 1 kg wt = 9.8 N,
mass/length,  = 10–6 × 1 × 8.93 × 103 kg m–1

= 8.93 × 10–3 kg m–1

v =
T


 = 3
9.8

8.93 10
 m s–1 = 33.13 m s–1

Example 4. Deduce the velocity of longitudinal waves in a metal rod.
Given : modulus of elasticity = 7.5 × 1010 N m–2 and density = 2.7 ×
103 kg m–3.

Solution. v = 
Y


 = 
10

3
7.5 10
2.7 10




 m s–1

= 5.27 × 103 m s–1

Example 5. Determine the speed of sound in a liquid of density
8000 kg m–3. Given : bulk modulus = 2 × 109 N m–2.

Solution. v =
B


 = 

92 10
8000


 m s–1 = 500 m s–1

Newton assumed that sound waves travel in air under isothermal
conditions, i.e., temperature remains constant. So, the changes in
pressure and volume obey Boyle’s law.
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 PV = constant
Differentiating, PdV + VdP = 0 or Pd V = –VdP

or  P = P stress
V/V strain
d

d
  = (isothermal) elasticity B i

Now, v =
B Pi 
 

which is Newton’s formula for the velocity of sound waves in air or in
a gas.

Let us apply this formula to calculate the velocity of sound in air at
NTP.

At NTP, density  of air = 1.293 kg m–3

and                pressure, P = 0.76 m of Hg column
= 0.76 × 13600 × 9.8 Nm–2

( P = hdg and  dHg = 13600 kg m–3)

 v = 1 10.76 13600 9.8m s 280 m s
1.293

  


This value is nearly 16% less than the experimental value of
332 m s–1. This discrepancy could not be satisfactorily explained by
Newton.

Laplace, a French mathematician, suggested that sound waves travel
in air under adiabatic conditions and not under isothermal conditions as
suggested by Newton. He gave the following two reasons for this.

(i ) When sound waves travel in air, the changes in volume and
pressure take place rapidly. (ii) Air or gas is a bad conductor of heat.

Due to both these factors, the compressed air becomes warm and
stays warm whereas the rarefied air suddenly cools and stays cool. For
adiabatic changes in pressure and volume,

PV = constant
On differentiation,  1P V V + V P = 0d d 

or 1
V P V PP =

VV V
d d

dd




     = 

P BV
V

a
d
d  ,
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where Ba is adiabatic elasticity.

Now, v = 
Ba


 = 

P


which is Laplace’s corrected formula for velocity of sound waves in air
or gas.

Again,  1 1P 1.41 280 m s 332.5 m sv       


This result agrees very well with the experimental value of 332 m s –1.
This establishes the correctness of Laplace’s formula.

(i ) Effect of change in pressure
At constant temperature, PV = constant (Boyle’s law)

or
P constantm




where m is the mass of the gas and  is its density.

or
P constant


[ m is constant.]

or
P constant



[  is also constant.]

   P =v
 
   

 is also constant.

So, if the temperature remains constant, the change in pressure has
no effect on the velocity of sound in a gas.

Clearly, the velocity of sound in a gas is independent of pressure,
provided temperature remains constant.

(ii ) Effect of change in temperature
Let v0 and vt be the velocity of sound in a gas 0°C and t°C respectively.

Let  and P remain the same at both temperatures.

Thus,         0
0

P Pand t
t

v v 
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Dividing,   00

0

P
P

t

t t

v
v

 
  

  
...(1)

Let V0 and 0 be the volume and density respectively of a given
mass m of gas at 0°C. Let Vt and t be the volume and density respectively
for the same mass m of gas at t°C.

Then,     0 0V Vt t m   or   0

0

V
V

t

t





But  
0 0

V T
V T

t  (Charle’s law)

where T0 and T are the absolute temperatures corresponding to 0°C
and t°C respectively.

 0

0

T
T t






0 0

T
T

tv
v

 ...(2)  [from equation (1)]

So, the velocity of sound varies directly as the square root of the
absolute temperature of the gas. This explains as to why sound travels
faster on a hot summer day than on a cold winter day.

Temperature coefficient of velocity of sound

From equation (2), 
0

273 273
273 0 273

tv t t
v

 
 



or                           
1/2

0
1 1

273 273
tv t t

v
 

    
 

Assume t to be small. Expanding the right hand side of the above
equation by Binomial theorem and neglecting squares and higher

powers of ,
273

t
 we get

0

11 1
2 273 546

tv t t
v

    

or 0
0 01

546 546t
vtv v v t 

    
 

or                  10
0 332 m s

546 546t
v t tv v     1

0[ 332 m s ]v 

or                            1
0 0.608 ms 0.61 mstv v t t     –1
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Temperature coefficient of velocity of sound,

 = 0tv v
t


 = 0.61 m s–1 °C–1

When t = 1°C, then 1
0 0.61 m stv v     or  61 cm s–1

So, the velocity of sound increases by 0.61 m s–1 for every one degree
centigrade rise of temperature. This is known as the temperature
coefficient of velocity of sound in air.

(iii ) Effect of change in density
Consider two different gases at the same temperature and pressure

with different densities.

Then, 21
1 2

1 2

PP   and  v v 
 

 
or 21 1

2 2 1

v
v


 

 

For diatomic gases, 1 2   . 
21

2 1

v
v






So, the velocity of sound in a gas is inversely proportional to the
square root of the density of the gas.

Illustration. The density of oxygen is 16 times the density of
hydrogen.


2

H

O

v
v = 2O

H




 = 

H

H

16


 = 4

Thus, all other things being equal, sound travels four times faster
in hydrogen than in oxygen.

(iv ) Effect of humidity
We know that humid air contains a large proportion of water vapour.

So, the density m of moist air is less than the density d of dry air.

1.6d

m





Also, 0.9m

d






Let vm and vd be the velocities of sound in moist air and dry air
respectively.

Then,                
P P     and    m d

m d
m d

v v
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P

P
m m d m d

d m d d m

v
v

  
   

   

or 1m

d

v
v

 or vm > vd

So, sound travels faster in moist air than in dry air. This explains as
to why sound travels faster on a rainy day than on a dry day.

(v ) Effect of wind
Let wind travel with a velocity w making

an angle  with the direction of propagation of
sound [Fig. 5.9]. Then, the effective velocity of
sound will be (v + w cos ).

If the wind blows in the direction of sound,
then the velocity of sound will be increased
from v to (v + w). If the wind blows in a direction
opposite to the direction of propagation of
sound, then the velocity of sound is decreased from v to (v – w). If wind
blows perpendicular to the direction of sound, then  = 90° and cos  =
cos 90° = 0. So, there will be no effect on velocity of sound.

Example 6. At what temperature will the velocity of sound in hydrogen
be twice as much as that at 27°C ?

Solution.
27

tv
v

=
273

273 27
t



or
27

27

2 v
v


= 
273

300
t

or    4 = 
273

300
t

or 273 + t = 1200 or t = 927°C

Example 7. At normal temperature and pressure, the speed of sound
in air is 332 m s–1. What will be the speed of sound in hydrogen (i) at
normal temperature and pressure, (ii) at 819°C temperature and
4 atmospheric pressure ? Given : air is 16 times heavier than hydrogen.

Solution. (i ) Let va and vh represent the speeds of sound in air and
hydrogen respectively.

w



vw cos 

Fig. 5.9. Effect of wind on
velocity of sound
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va =
P

ad


and
P

h
h

v
d




Now,
a

h

v
v = h

a

d
d But

1
16

h

a

d
d




a

h

v
v =

1 1
16 4



or 14 4 332 m sh av v     = 1328 m s–1

(ii) Pressure has no effect on the velocity of sound.

819

0

v
v =

273 819 1092 4 2
273 0 273


  



or v819 = 2 × v0 = 2 × 1328 m s–1 = 2656 m s–1

Statement. The displacement due to a number of waves acting
simultaneously at a point in a medium is the sum of the
displacement vectors due to each one of them acting separately.

Since displacements are either positive or negative, therefore, the
net displacement is an algebraic sum of the individual displacements.

An interesting property of a wave is that it preserves its individuality
when travelling through space. Each wave behaves as if it has nothing
to do with other waves. This fact is amply illustrated by the following
examples.

(i ) In an orchestra, different musical instruments are playing
simultaneously. But we can detect the note produced by an individual
instrument.

(ii) Different radio waves cross the antenna. But we can pick up any
given frequency.

These examples establish the independent behaviour of a wave.
Huygen’s principle of superposition is a natural consequence of the
independent behaviour of a wave.
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Consider two pulses (in a string)
approaching each other as shown in
Fig. 5.10 (a). When the pulses cross
each other, they combine to produce a
zero resultant throughout the string as
shown in Fig. 5.10 (b). After crossing
each other, they again begin to travel
independently as if nothing had
happened as shown in Fig. 5.10 (c).

Following are the three
consequences of the principle of superposition of waves.

(i) Two waves of the same frequency move with the same velocity in
the same direction. This gives rise to the phenomenon of interference
of waves.

(ii) Two waves of identical frequencies and amplitudes travel along
the same path with the same speeds in the opposite directions. This
gives rise to stationary waves.

(iii) Two waves of slightly different frequencies moving with the same
velocity in the same direction give rise to the phenomenon of beats.

A progressive wave is one which travels in a given direction with
constant amplitude, i.e., without attenuation.

In the following treatment, we shall consider transverse wave motion.
However, the treatment is valid for
longitudinal wave motion also.

Let a plane wave originate at O
as shown in Fig. 5.11. Let it proceed
from left to right in an elastic
medium. As discussed earlier,
particles of the medium shall
execute SHM of the same amplitude
and time period about its mean

(a)

(b)

(c)

Fig. 5.10. Two pulses having equal and
opposite displacements moving in
opposite directions. The overlapping
pulses add up to zero displacement in (b).

x

O
P

B

Fig. 5.11. Plane progressive wave
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position. Let us count time from the instant the particle at O crosses its
mean position in the positive direction of Y-axis. The displacement y of
the particle at any time t is given by

y(0, t) = A sin t
where A and  represent the amplitude and angular frequency
respectively of simple harmonic motion executed by the particle at O.

Since the disturbance is handed over from one particle to the next
therefore there is a gradual fall in phase from left to right, i.e., in the
direction of motion. Let the phase of particle at P lag behind the phase
of particle at O by . Then, the displacement of particle at P at any time
t is given by

y(x, t) = A sin (t – ) ...(1)

At B, which is one wavelength  apart from O, the phase difference
is 2. In other words, particles at O and B have the same phase of
vibration.

At a distance , the phase changes by 2.

At a distance x, the phase changes by 
2 .x



  
2 x

 


where x is the distance of P from O.

From equation (1), 
2( , ) A siny x t t x 

   
 

...(2)

Now,  
2   and  T =
T v
 

 

  
2 v 


where v is called the wave velocity or phase velocity.

From equation (2), 2 2( , ) A siny x t vt x  
  

  

or
2( , ) A sin ( )y x t vt x

 


...(3)

Also, ( , ) A sin2 v xy x t t 
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or ( , ) A sin 2
T
t xy x t  

   
 

...(4)

Again, from equation (2), ( , ) A sin ( )y x t t kx   ...(5)     
2 k  

  

Discussion. (i) While arriving at the wave equation, we have made a
particular choice of t = 0. The origin of time has been chosen at an
instant when the left end x = 0 is crossing its mean position y = 0 and
is moving up. For a general choice of the origin of time, we need to
add a phase constant (also known as initial phase angle) 0 so that
equation (5) will be,

y = A sin [(t – kx) + 0] ...(6)

For 0 = 2


, y = A sin ( )
2

t kx  
   

 

or        y = A cos (t – kx) ...(7)

Using cos (– ) = cos ,

      y = A cos (kx – t) ...(8)

For  0 = , y = A sin [(t – kx) + ]

or       y = – A sin (t – kx)

Using           sin (– ) = – sin ,

                   y = A sin (kx – t) ...(9)

For 0 = 
3
2


, y = A sin 
3( )
2

t kx  
   

 

                   y = – A cos (t – kx)
For 0 = 2, y = A sin [(t – kx) + 2]

or                    y = A sin (t – kx) ...(10)

The amplitude of a wave is the magnitude of maximum
displacement of the constituents of the medium from their
equilibrium positions as the wave passes through them.

In the equation of the travelling wave, y(x, t) varies between A and
– A. This is because the sine function varies between 1 and – 1. Without
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any loss of generality, we can take A to be a positive constant. Then A
represents the maximum displacement of the constituents of the medium
from their equilibrium position. Note that the displacement y may be
positive or negative, but A is positive. It is called the amplitude of
the wave.

The phase of a wave is a quantity which determines the
displacement of the wave at any position and at any instant.
Mathematically, the quantity appearing as the argument of the sine
function in the equation of the travelling wave is called the phase of
the wave. It is denoted by .

Considering equation y(x, t) = A sin (t – kx + 0),
 = t – kx + 0

Clearly, 0 is the phase at x = 0 and t = 0. Hence 0 is called the
initial phase angle. By suitable choice of origin on the x-axis and the
initial time, it is possible to have 0 = 0. Thus, there is no loss of
generality in dropping 0 i.e., in considering equations of travelling
wave with 0 = 0.

The minimum distance between two points having the same phase
is called the wavelength of the wave. It is usually denoted by .

For simplicity, we can choose points of the same phase to be crests
or troughs. The wavelength is then the distance between two consecutive
crests or troughs in a wave. Considering the equation y(x, t) = A sin
(kx – t), the displacement at t = 0 is given by

y(x, 0) = a sin kx
Since the sine function repeats its value after every 2 change

in angle,

 sin kx = sin (kx + 2n) = sin k 
2nx
k
 

 
 

That is the displacements at points x and at x + 
2n
k


 are the same,
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where n = 1, 2, 3, ... . The least distance between points with the same
displacement (at any given instant of time) is obtained by taking n = 1.
 is then given by

 = 
2
k


or k = 
2


k is the angular wave number or propagation constant. Its SI unit is
radian per metre or rad m–1. Sometimes, k is simply measured in m–1.
Angular wave number is 2 times the number of waves that can be
accomodated per unit length.

Time period of a wave is equal to the time taken by the wave to
travel a distance equal to one wavelength.  It is denoted by T.

Frequency of a wave is the number of complete wavelengths
traversed by the wave in one second. It is denoted by .

Angular frequency of a wave
is 2 times the frequency of the
wave.

Fig. 5.12 shows the sinusoidal
plot of a travelling wave. It helps us
to describe the displacement of an
element (at any fixed location) of the
medium as a function of time. Let
us consider the equation : y(x, t) =
A cos (kx – t) and monitor the
motion of the element, say at x = 0.

y(0, t) = A sin (– t)
= – A sin t

Now, the period of oscillation of the wave is the time it takes for an
element to complete one full oscillation. That is

– A sin t = – A sin (t + T)
= – A sin (t + T)

Since sine function repeats after every 2.

 T = 2 or  = 
2
T


y

t
A

T

Fig. 5.12. An element of a string at a fixed
location oscillates in time with amplitude A
and period T, as the wave passes over it
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 is called the angular frequency of the wave. Its SI units is rad s–1.
The frequency  is the number of oscillations per second. Therefore,

 = 
1
T 2






 is usually measured in hertz.

Example 8. A wave travelling along a string is described by,
y(x, t) = 0.005 sin (80.0 x – 3.0 t),

in which the numerical constants are in SI units (0.005 m, 80.0 rad m–1,
and 3.0 rad s–1). Calculate (a) the amplitude, (b) the wavelength, and
(c) the period and frequency of the wave. Also, calculate the displacement
y of the wave at a distance x = 30.0 cm and time t = 20 s?

Solution. On comparing the given displacement equation with

                          ( , ) sin ( ),my x t y kx t  

we find
(a) the amplitude of the wave is 0.005 m = 5 mm
(b) the angular wave number k and angular frequency  are

k = 80.0 rad m–1 and  = 3.0 rad s–1

We then relate the wavelength  to k through 2 /k  

                                 1
2  rad

80.0 rad m


  = 7.85 cm

(c) Now we relate T to  by the relation T = 2/

1
2  rad

3.0 rad s


  = 2.09 s

and frequency,  = 1/T = 0.48 Hz
The displacement y at x = 30.0 cm and time t = 20 s is given by

               0.005 m sin (80.0 0.3 3.0 20)y    

                  0.005 m sin ( 36 rad)   = 5 mm

Example 9. Given : 0.8 sin16
40
xy t 

   
 

 metre. Calculate the

wavelength and the velocity of the wave represented by this equation.

Solution. Rewriting the given equation,
80.8 sin 2 8    or   0.8 sin 2 8
40 5

x xy t y t   
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Comparing with   A sin 2 ,  we get
T
t xy  

    

1 8
T
   or   = 8 Hz,  = 5 m

Velocity, v =  = 40 m s–1

(i ) First or Fundamental mode of vibration. In this mode of
vibration, the string vibrates as a whole in one segment (Fig. 5.13a).
There are two nodes and one antinode. If 1 is the wavelength of the
standing wave, then 1

2


 = L or 1 = 2L. The corresponding frequency of
vibration is given by

1 = 
1

1 T
2L 2L

v v
 

 

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

N

N

N

A

A

A

A

A

A

A

A

AA

A

A

A

A

N

N N

N

N

N

N

N

N

N

N

N

       
  Fundamental
or first harmonic

  (a)

           
 second harmonic

 (b)

          
 third harmonic

(c)

          
fourth harmonic

(d)

     
fifth harmonic

   (e)

          
sixth harmonic

(f)

L =
1
2

L = 2

L =
3
2
3

Fig. 5.13. Stationary waves in a stretched string fixed at both ends.
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This is the lowest possible natural frequency of the string. This
frequency is called fundamental frequency. The sound or note produced
is called fundamental note or fundamental tone or first harmonic.

(ii ) Second mode of vibration. In this mode of vibration, the string
vibrates in two segments or loops of equal length (Fig. 5.13b). There are
three nodes and two antinodes. If 2 is the wavelength of the standing
wave, then 2 = L. The corresponding frequency of vibration is given by

2 = 
2

2
L 2L

v v v 
   

  

= 21 = 2
1 T
2L
 
 

 

The frequency of vibration of the string becomes twice the
fundamental frequency. The note produced is called first overtone or
second harmonic.

(iii ) Third mode of vibration.  In this mode of vibration, the string
vibrates in three segments or loops of equal length (Fig. 5.13c). If 3

is the wavelength, then L = 33
2


 or 3 = 
2L
3

. The corresponding
frequency is

3 = 
3

3
2L

v v



 = 3 2L

v 
 
 

 = 31 = 3
1 T
2L
 
 

 

The frequency of vibration of the string becomes three times the
natural frequency. The note produced is called second overtone or
third harmonic.

Figs. 5.13(d), (e) and (f) show fourth, fifth and sixth mode of vibration.
In general, if the string is made to vibrate in n loops or segments,

then L = n
2
n or n = 

2L
n . n = 

n

v


 = n
2L
v

or n = 
T

2L
n



Positions of Nodes. In the first mode, there are two nodes. These
are located at x = 0, L. In the second mode, there are three nodes.

These are located at x = 0, 
L
2

, L. In the third mode, there are four nodes

located at x = 0, L 2L,
3 3

, L. In the nth mode, there will be (n + 1) nodes

located at x = 0, L 2L 3L, , ,
n n n

 ......, L .
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Positions of Antinodes. In the first mode, there is one antinode

located at x = 
L
2

. In the second mode, there are two antinodes located

at x = 
L 3L,
4 4

. In the third mode, there are three antinodes located at

x = 
L 3L 5L, ,
6 4 6

. In the nth mode, there are n antinodes located at

x = 
L 3L 5L, ,
2 2 2n n n , ..., 

(2 1)L
2

n
n


.

We know that
1 T
2L

 


The following laws of vibrations of strings follow from this equation.

(i ) Law of length. If the tension in a given string remains constant,
then the fundamental frequency varies inversely as the length.

1
L

 

If the length of the string is halved, the frequency is doubled.

(ii ) Law of tension. For a string of given length and material, the
fundamental frequency varies directly as the square root of the tension.

T 

If the tension is increased four times, the frequency of the note
becomes double.

(iii ) Law of mass. For a string of given length and fixed tension, the
frequency varies inversely as the square root of linear density (mass
per unit length) of the string.


1

 


If linear density is quadrupled, the frequency is halved.
Consider a string of diameter D. Let  be the density of material of

the string.

Cross-sectional area of the string = 
2D

4
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Volume of unit length of string = 
2 2D D1

4 4
 

 

Mass per unit length = Volume of unit length × density


2D

4


   

 2
1 T 4 1 T
2L LDD


  

 

This leads to following two laws. Of course, both these laws are
contained in the law of mass stated earlier.

1. Law of diameter. For a string of given length and tension, the
frequency is inversely proportional to the diameter of the string.

1
D

 

So, thinner the string, higher is the frequency of vibration.
2.  Law of density. For a string of given length, diameter and tension,

the frequency is inversely proportional to the square root of the density
of the material of the string.

1
 



Smaller the density, higher is the frequency of vibration.

Example 10. A steel wire 0.72 m long has a mass of 5.0 × 10–3 kg.
If the wire is under a tension of 60 N, what is the speed of transverse
waves in the wire ?

Solution. Mass per unit length of wire,

 = 
35.0 10 kg

0.72 m


 = 6.9 × 10–3 kg m–1

Tension, T = 60 N

Speed of wave on the wire, v = 
T


= 3
60

6.9 10
 m s–1 = 93.25 m s–1
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Example 11. A 100 cm long wire of
mass 40 g supports a mass of
1.6 kg as shown in Fig. 5.14. Find the
fundamental frequency of the portion of
the string between the wall and the
pulley. Take g = 10 m s–2.

Solution. T = 1.6 kg wt = 1.6 × 10 = 16 N

 = 
340 10

1

  = 0.04 kg m–1

L = (100 – 20) cm = 0.8 m

 = 
1 T
2L 

= 
1 16

2 0.8 0.04
 Hz = 12.5 Hz

Example 12. A sonometer wire carries a brass weight (specific gravity
= 8) at its end and has a fundamental frequency of 320 Hz. What would
be its frequency if this weight is completely immersed in water?

Solution. When the weight is immersed in water, buoyancy is 
T
8

,
where T is the tension in the wire.

Net tension = T – 
T 7T
8 8


 = 320 7
8

 Hz = 293.3 Hz

(i ) Introduction. It is a wind instrument in which sound is produced
by setting into vibrations an air column in it.

(ii ) Construction. It consists of a
wooden or metallic hollow tube called
resonator (R). A narrow tapering opening
called mouth-piece (m) is provided at one
end of the resonator as shown in Fig. 5.15.
A slanting solid called bevel (B) is fitted near
the mouth-piece. The height of the bevel is

Fig. 5.14

20 cm

80 cm

1.6 kg

l

s

m

RB

Fig. 5.15. Open organ pipe
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such that there is only a narrow slit s between the bevel and the wall of
the resonator. A sharp edge (l ) is provided in the wall of the resonator.
This is called the lip of the pipe.

(iii ) Working. Air is blown into the pipe through the mouth-piece.
After striking against the bevel, the air passes through the narrow slit s
in the form of a thin sheet. This fast moving sheet of air strikes against
the lip setting it into vibrations. The vibrating lip produces a sound
called edge tone. The frequency of the edge tone depends not only on
the pressure with which air is blown into the pipe but also on the
distance of the lip from the slit.

(iv) Formation of longitudinal stationary waves. When the waves
reach the open end of the pipe, they are reflected. This is because the
air outside the resonator is rarer than the air inside it. The reflected
and the incident waves superpose to give longitudinal stationary waves
with fixed nodes and antinodes. When the frequency of the vibrating
air column in the resonator becomes equal to the frequency of the edge
tone, resonance occurs and hence loud sound is produced.

Since both the ends of the pipe are open therefore the waves are
reflected from these ends. However, the particles continue to move in
the same direction even after the reflection of the waves at the open
ends. So, the particles have maximum displacements at the open ends.
Thus, antinodes are formed at the open ends.

Fundamental or First normal mode of vibration
This is the simplest mode of vibration in which the antinodes at the

ends are separated by a node in the middle.
In this mode of vibration,

1 L
2


    or 1 2L 

Frequency,       1
1

v
 


   or 1 2L

v
 

Since this is the simplest mode of vibration therefore the sound
produced is called fundamental tone or first harmonic. Longer the
resonator, lesser will be the frequency of sound produced.



2
1

A AN

L

Fig. 5.16. First mode of vibration
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Second normal mode of vibration
In this mode of vibration, the

antinodes at the open ends are separated
by two nodes and one antinode [Fig. 5.17].

If L be the length of the resonator,
then

2 = L

Frequency, 2
2

v
 



or 2 2
2L
v

   or 2 12  

The sound produced in this mode of vibration is called first overtone
or second harmonic. The frequency of first overtone is two times the
frequency of the fundamental tone.

Third normal mode of vibration
In this mode of vibration, the

antinodes at the open ends are separated
by three nodes and two antinodes.

In this mode of vibration,

             33 L
2


 or 3
2L
3

 

Frequency, 3
3

v
 


 = 2L /3

v

or 3 3
2L
v

   or 3 = 31

The sound produced in this mode of vibration is called second
overtone or third harmonic. Its frequency is three times the
fundamental frequency.

By adjusting the pressure with which air is blown into the pipe, the
tones of frequencies 1, 21, 31, 41, ..... can be produced. Thus, the
frequencies of different overtones are simple integral multiples of the
frequency of fundamental tone.

In general, the frequency of vibration in nth normal mode of vibration
in an open organ pipe is given by:

A A A



N N

L

Fig. 5.17. Second mode of vibration

Fig. 5.18. Third mode of vibration

A N N NA A A

23
2

L
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n = n1

The note produced in this case is called nth harmonic or (n – 1)th
overtone. It would contain n nodes and (n + 1) antinodes.

Construction. Its construction is
similar to that of open organ pipe except
that its one end is closed. The waves
are reflected from the closed end as the
closed end behaves like a denser
medium. The incident and the reflected
waves superpose to form longitudinal
stationary waves having fixed nodes and antinodes. When the frequency
of the edge tone is equal to the frequency of vibration of the air column,
then the resonance takes place. Consequently, a loud sound is heard.

When the wave is reflected from the closed end, the direction of
motion of the particles changes. So, the displacement is zero at the
closed end. Thus, a node is formed at the closed end. On the other
hand, an antinode is formed at the open end. This is because the
displacement of particles is maximum at the open end.

Fundamental or First normal mode of vibration
This is the simplest mode of vibration in which there is a node at

the closed end and an antinode at the open end [Fig. 5.20].
If L be the length of the resonator, then

 1L
4


 or 1 = 4L

Frequency, 1
1

v
 


 = 4L

v

Since this is the simplest mode of
vibration therefore the sound produced
is called fundamental tone or first
harmonic. Longer the resonator, lesser
will be the frequency of sound produced.

s

RB

l

m

Fig. 5.19. Closed organ pipe

A
N

1

4

L

Fig. 5.20. First mode of vibration
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Second normal mode of vibration
In this mode of vibration, there is one antinode and one node

between a node at the closed end and an antinode at the open end
[Fig. 5.21].

In this case,  23
L

4


 or 2
4L
3

 

Frequency, 2
2 4L /3

v v
  



or 2 3
4L
v

      or 2 13  

The sound produced in this mode of vibration is called first overtone
or third harmonic. The frequency of the first overtone is three times
the frequency of the fundamental tone.

Third normal mode of vibration
In this mode of vibration, there are

two nodes and two antinodes between
a node at the closed end and an
antinode at the open end [Fig. 5.22].

In this case, 35L
4


 or    3
4L
5

 

Frequency,  3
3

v
 


 = 4L /5

v

or                      3 5
4L
v

       or 3 15  

The sound produced in this case is called second overtone or fifth
harmonic. The frequency of the second overtone is five times the
frequency of the fundamental tone.

By adjusting the pressure with which air is blown into the pipe, the
tones of frequencies 1, 31, 51,...... can be produced. Thus, the
frequencies of different overtones are odd multiples of the frequency of
fundamental tone.

In general, the frequency of vibration in nth normal mode of vibration
in a closed organ pipe is given by,

N NA A


4

L

Fig. 5.21. Second mode of vibration

N N NA A A

5
4

L

Fig. 5.22. Third mode of vibration
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n = (2n – 1) 4L
v

 = (2n – 1)1

The note produced in this case is called (2n – 1)th harmonic or
(n – 1)th overtone.

Comparison of closed and open organ pipes
(i ) Fundamental note in closed pipe has half the frequency of the

fundamental note in open pipe.
(ii ) In a closed pipe, only odd harmonics are present. In an open

pipe, all harmonics are present.
(iii ) The musical sound produced by an open pipe is richer than

the musical sound produced by a closed organ pipe.

Example 13. A closed organ pipe can vibrate at a minimum frequency
of 500 Hz. Find the length of the tube. Speed of sound in air = 340 m s–1.

Solution.   = 4L
v

or L = 
340

4 4 500
v


 

m = 0.17 m = 17 cm

Example 14. An open organ pipe emits a note of frequency 256 Hz
which is its fundamental. What would be the smallest frequency produced
by a closed pipe of the same length?

Solution.  For open organ pipe, 2L
v

 

  256    or   512 L
2L
v v 

For closed organ pipe, 
512 L

4L 4L
v

    = 128 Hz

When two sounding bodies of nearly the same frequency and same
amplitude are sounded together, the resultant sound comprises of
alternate maxima and minima.

The phenomenon of alternate waxing and waning of sound at regular
intervals is called beats.
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The number of beats heard per second is called beat frequency. It is
equal to the difference in the frequencies of sounding bodies. Beats are
heard only when the difference in frequencies of two sounding bodies
is not more than ten. This is due to persistence of hearing.

The time from each loud sound to the next loud sound is called one
beat-period.

Suppose at any place, two sound waves are in the same phase. The
amplitudes of the two sound waves will be added up resulting in
maximum amplitude. Since intensity is directly proportional to square
of amplitude therefore loud sound will be heard.

But since the frequencies are different, even though slightly, one
sound wave will start getting out of phase from the other as time passes
on. Eventually, the two waves will get out of phase with each other. This
will produce minimum amplitude resulting in a faint sound, i.e., sound
of low intensity. As time further elapses, the phase again goes on
changing and again, we get a loud sound. In this way we continue to
hear loud and faint sounds alternately. One loud sound plus one faint
sound constitute a beat.

Analytical treatment of beats. Consider two harmonic sound waves
of nearly equal frequencies 1 and 2. The periodic dips in sound, called
beats, will occur with a frequency equal to (1 – 2).

Let a be the amplitude of each wave. Let us count time from the
instant when the two sound waves are in the same phase. The
displacements s1 and s2 at a point due to the two waves are given by

11
 cos  2s a t  and 22  cos  2s a t 

For the sake of simplicity, it is assumed here that there is no initial
phase difference between the two wave trains. It is further assumed
that the waves propagate over long distances so that the boundary
effects can be neglected.

Applying the principle of superposition of waves,

21s s s 

or 1 2 cos  2 cos  2s a t a t   

or 1 2( cos  2 cos  2 )s a t t   

or 1 2 1 22 2 2 2
2cos cos

2 2
t t t ts a       
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or 1 2 1 2( ) ( )
2  cos 2 cos2

2 2
s a t t     
  

or 1 2 1 22  cos 2 cos2
2 2

s a t t          
      

    

or 1 2A cos 2
2

s t   
  

 

where 1 2A = 2  cos 2
2

a t     
   
  

 is

the amplitude of the resultant wave.
It may be noted that the frequency of
the resultant wave is the average of
the frequencies 1 and 2 of the
superposing wave trains.

The amplitude A of the resultant
wave is a function of time. A varies
between + 2a and –2a. The amplitude
A is *maximum, i.e., + 2a or – 2a when

1 2cos ( ) 1t     

or      1 2cos ( ) cost n     

where  n = 0, 1, 2,.......

or 1 2( )t n     

or           1 2( )t n   

or        
1 2 1 2 1 2 1 2

1 2 30,  ,  ,  ,....nt  
           

So, the time interval between two successive maxima is 1

1 2 
.

Similarly, the amplitude A is minimum (zero) when

1 2cos ( ) 0t     or 1 2
1cos ( ) cos( )
2

t n      

or 1 2
1( ) ( )
2

t n    

Experimental Demonstration
of Beats
Two identical tuning forks are
placed on two sound boxes as
shown. Attach a little wax to one
prong of tuning fork A. Set the
two forks into vibration. Beats
will be heard. On changing the
amount of wax, the number of
beats per second will change.

A B

*Since amplitude is maximum       intensity is also maximum.
It is proportional to 4a2.
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or      
231 1

2 2 2 2

1 2 1 2 1 2 1 2
,  ,  ,.....

n
t


 
           

So, the time interval between two successive minima is  
1 2

1 .
  

Thus, we find that maxima and minima occur at regular intervals of

1 2

1 .
  

 So, the beat frequency is (1 – 2). This is equal to the difference

in the frequencies of the two
superposing wave trains.

Graphical  representation of
beats

Fig. 5.23 illustrates the
phenomenon of beats for two
harmonic waves of frequencies 11 Hz
and 9 Hz. The amplitude of the
resultant wave shows beats at a
frequency of 2 Hz.

(a) To determine unknown
frequency

The tuning fork of unknown
frequency is sounded with a standard
tuning fork of known frequency so
that the beats are heard. The number
of beats heard per second is determined. This is equal to the difference
of ‘unknown frequency’ and ‘known frequency’. Let N be the frequency
of the standard tuning fork. Let ‘a’ beats be heard per second. Then the
unknown frequency is either (N + a) or (N – a).

To decide about the positive or negative sign, one of the prongs of
the tuning fork of unknown frequency is loaded with wax. This decreases
the frequency. Now, if the two tuning forks are sounded together, we
will  not hear ‘a’ beats per second. If the number of beats heard per
second is greater than a, then (N – a) was the correct frequency. If on
loading, the number of beats heard per second is less than a, then
(N + a) was the correct frequency of the fork.

1.0

–1.0

0
y

1.0

–1.0

0
y

t(s)
2.00.5 1.0 1.5

2.0

1.0

–1.0

–2.0

0y

(a)

(b)

(c)

t(s)

t(s)

Fig. 5.23. Superposition of two harmonic
waves, one of frequency 11 Hz. (a), and the
other of frequency 9 Hz. (b), giving rise to
beats of frequency 2 Hz, as shown in (c).
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If instead of loading one prong, it is filed, then the reverse results
will be true.

Note that when a prong is filed a little, it becomes lighter and its
frequency of vibration increases.

(b) Use in music. (i) For tuning musical instruments. The tension in
the string of one of the two instruments is altered till beats are heard.
This will occur at nearly equal frequencies. Keep on adjusting carefully
till the beats disappear. Now, the two instruments are in tune.
(ii ) Sometimes in an orchestra, a deliberate ‘beating’ sound is produced.
This gives the effect of a sonorous vibrating sound and is generally
appreciated in musical performance.

(c) Use in electronics. Electronic beat frequency oscillators are
commonly used to generate a beat frequency (BF) which is audible.
Also in modern radio receivers, ultrasonic beats are generated and radio
reception is obtained.

(d) Use in mines. The presence of dangerous gases in mines may be
detected by the use of beats.

Example 15. In an experiment, it was observed that a tuning fork and
a sonometer wire gave 5 beats per second both when the length of
wire was 1 m and 1.05 m. Calculate the frequency of the fork.
Solution. Let the frequency of the fork be . At the smaller length of
th e so n o m eter w ire (l1 = 1 m), the frequency of the wire must be higher
i.e., 1 =  + 5; and at the larger length (l2 = 1.05 m), the frequency
must be lower.

 2 =  – 5

According to the law of length, 
21

2 1

l
l






    
5 1.05
5 1.00

 


 

On solving, we get = 205 Hz

Example 16. Two tuning forks A and B when sounded together give
4 beats/s. A is in unison with the note emitted by a 0.96 m length of a
sonometer wire under a certain tension. B is in unison with 0.97 m length
of the same wire under the same tension. Calculate the frequencies of
the forks.
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Solution. A is in unison with a smaller length of the wire as compared
to B. So, A has higher frequency as compared to B. Let  be the
frequency of A.

Then,     
4 0.96 96

0.97 97
 

 


1 
l

 
  

 


or
4 11 1

97
  


or
4 1

97




or 4 97 Hz    = 388 Hz

The apparent change in the frequency of sound when the source of
sound, the observer and the medium are in relative motion is called
Doppler effect.

Doppler effect applies to waves in general. This effect has been named
after German-born Austrian Physicist Christian Johann Doppler
(1803–1853).

Whenever there is relative motion between a listener (or observer)
and a source of sound, the pitch or frequency of sound appears to be
changed. If the source of sound is approaching the listener or the listener
is approaching the source of sound or both are approaching each other,
then the frequency of sound appears to be higher than the true
frequency. If the source of sound is receding away from the listener or
the listener is receding away from the source of sound or both are
receding away from each other, then the frequency of sound appears to
be lower than the true frequency.

Let us now derive expressions for the apparent frequency of sound
in different cases. While deriving these expressions, we make the
following assumptions :

(i ) The velocity of the source, the observer and the medium are
along the line joining the positions of the source and the observer.

(ii ) The velocity of the source and the observer is less than the
velocity of sound.

(iii ) The velocity of sound is always positive.
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Case I. Source in motion, Observer at rest, Medium at rest
Suppose the source S and the observer O are separated by distance

v, where v is the velocity of sound. Let  be the frequency of the sound
emitted by the source. Then,  waves will be emitted by the source
in 1 second. These  waves will be accommodated in distance v
[Fig. 5.24 (a)]. Let the source start moving towards the observer with
velocity vs. After one second, the  waves will be crowded in distance
(v – vs) [Fig. 5.24 (b)]. Now, the observer shall feel that he is listening to
sound of wavelength  and frequency .

 waves

v
S

O

(a)  Both source and observer at rest

v s vv s

S S’
O

(b)  Source moving towards the observer

 waves

Fig. 5.24

Now,              or  
/s

v v
v v

    
  

or                        or  
s s

v v
v v v v


     

 

So, as the source of sound approaches the observer, the apparent
frequency  becomes greater than the true frequency .

If the source is receding away from the observer, then the apparent
frequency is given by

s

v
v v

  


Case II. Observer in motion, Source at rest, Medium at rest
Let the source and observer occupy positions marked S and O

respectively in Fig. 5.25 (a). Now take a point A such that OA = v. If both
S and O are in their respective places, then  waves given by S would be
crossing O in 1 second and would fill the space OA (= v). In one second, O
moves towards S with velocity vo such that OO = vo. So, the observer has
received not only the  waves occupying OA but has also received
additional number of waves occupying the distance OO. Thus in one
second, the observer receives waves occupying the space AO such that
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AO = ov v 

(a)  Both source and observer are at rest

 waves

S O A

v

(b) Observer moving towards source

v o
S O AO

v

Fig. 5.25

Number of waves in distance v = 

Number of waves in unit distance = v


Number of waves in distance (v + vo) ( )ov v
v


 

Apparent frequency, ( )ov v
v


  

ov v
v


  

If the observer is moving away from the source, then the apparent
frequency is given by

ov v
v


  

Case III. When both the Source and Observer are moving towards
each other

When the source moves towards a stationary observer,

s

v
v v

  


Again, when the observer moves towards a stationary source,
ov v

v


  

When both the source and observer move towards each other, then
apparent frequency is given by

o

s

v v v
v v v


   


or
o

s

v v
v v


  


If both the source and observer move in the direction of sound,
then

o

s

v v
v v
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(i ) To determine the velocity of a star, galaxy etc.
Doppler’s effect can be used to determine the velocity of approach

or recession of a heavenly body towards or away from the Earth. When
light from a star is examined by a spectroscope, the spectrum is found
to consist of several well-defined spectral lines. If the star is approaching
the Earth, a shift of spectral lines occurs towards the violet end of the
spectrum. This indicates a decrease in wavelength.

When the star is receding away from the Earth, the spectral lines
shift towards the red end of the spectrum indicating an increase in
wavelength. These changes of wavelength on account of motion of star
are called spectral shifts. These help us to calculate the velocity of
approach or the velocity of recession of the star.

Let the star be receding away from the Earth with velocity v. Then
applying Doppler’s effect, the apparent frequency of the light waves
coming from the star is given by

c
c v

  


where c is the velocity of light and  is the true frequency of light waves.

  



 = 

c
c v

But   
c

 


and  c
 


where  and  are the apparent wavelength and true wavelength
respectively.


c

c





 = orc c
c v c v




  

or      



 = 1c v v

c c


 

or 1




 = orv v

c c
  




or     



 = orv v

c c
  

By knowing the value of , we can calculate the velocity v of the
star with respect to Earth. It has been generally observed that the
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wavelength of light received from the stars shifts slightly towards the
red end of the spectrum. This ‘red shift’ shows that the stars are receding
away from us. So, our universe is expanding.

(ii) Radar
It measures not only the distance and location of an aeroplane but

also its velocity by determining the frequency shift.

We know that = 
1

s

s

c vc
c v c


 

    
  

 = 1 s sv v
c c

 
      
 

or                       –  = ors sv v
c c
    or vs = c





So, by determining the frequency shift , vs can be calculated.
This has to be halved to get the approach velocity of the aeroplane.

Example 17. Determine the velocity of sound when the frequency
appears to be double the actual frequency to a stationary observer.

Solution.                  
s

v
v v

  


Now,                     2    2
s

v
v v

  


or                    2v – 2vs = v or v = 2vs or vs = 2
v

The source should approach the stationary observer with a velocity
equal to half the velocity of sound.

Example 18. A factory siren whistles a note of frequency 680 Hz.
A man travelling in a car at 108 km h–1 moving towards the factory
hears the whistle. What is the apparent frequency of the sound as heard
by him? Given : speed of sound in air = 340 m s–1.

Solution. vo = 1 1 15108 km h 108 m s 30 m s
18

    

v = 340 m s–1,  = 680 Hz

' = 
340 30 680 Hz

340
ov v

v
 

    = 740 Hz

Example 19. Two railway trains, each moving with a velocity of
108 km h–1, cross each other. One of the trains gives a whistle whose
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f requency is 750 Hz. What will be the apparent f requency for
passengers sitting in the other train before crossing ? Given : speed of
sound = 330 m s– 1.

Solution. vs
 = 1 1 15108 km h 108 m s 30 m s

18
    

vo
 = 108 km h–1 = 30 m s– 1

Note that the source and the observer are approaching.

 Apparent frequency,   = o

s

v v
v v






330 30 750 Hz
330 30


  


= 900 Hz

Intensity of sound represents the sound energy that flows per
second across a unit area held normal to the direction of flow.

This is an objective physical definition. The feeling in the listener’s
mind is spoken of as loudness. Thus, a sound of high intensity possesses
a greater loudness.

(i ) According to Weber-Fechner law, the loudness L of sound is
directly proportional to the logarithm of intensity I.

                              L log I or L K log I 

Here, K is a constant of proportionality.
(ii ) Consider two sounds of same frequency having intensities I1

and I0 respectively. Let L1 and L0 be their corresponding loudness.
Then, L1 = K log10 I1 and L0 = K log10 I0

Intensity level, L = L1 – L0 = K [log10 I1 – log10 I0]

or L = 1
10

0

IK log
I
 
 
 

(iii ) Let I0 represents the standard reference intensity (also called
zero level of intensity). Its value is 10–12 W m–2. It corresponds to the
threshold audibility of a healthy human ear at a frequency of 1000 Hz.

If K = 1, then L is measured in bel. [The unit is named in honour of
Alexander Graham Bell, the inventor of Telephone.]
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Now,   L = 1
10

0

Ilog bel
I
 
 
 

If  I1 = 0
0 10 10

0

10I10I , then L log log 10 1 bel
I

  

The intensity level of sound is said to be one bel if the intensity of
sound is ten times the zero level of intensity.

The intensity level of sound will be 2 bel if the intensity of sound is
100 times the zero level of intensity.

(iv ) Since bel is a large unit, therefore, a smaller unit called decibel
(dB) is used.

1dB =
1 bel.

10

Again, L = 1
10

0

I10 log decibel
I
 
 
 

If L = 1 decibel, then 1
10

0

I 1log = 0.1
I 10
 

 
 

or
1

0

I
I = antilog (0.1) = 1.2589   1.26

We can conclude from here that a 26 percent increase in the intensity
raises the intensity level by 1 decibel. It is interesting to note that it is
the smallest change in intensity level that a healthy human ear can
detect.

If I1 = 100 I0,

then L = 0
10

0

100 I10 log
I

 
 
 

 = 10 log10100

= 10 log10102 = 20 log1010
= 20 decibels

So, if the louder of the two sounds is 100 times more intense, then
the two sounds differ by 20 decibels. Similarly, if the louder of the two
sounds is 1000 times more intense, then the two sounds will differ by
30 decibels.
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Do the review exercises in your notebook.

1. A tuning fork of frequency 512 Hz makes 4 beats per second with
the vibrating string of a piano. The beat frequency decreases to
2 beats per second when the tension in the piano string is slightly
increased. The frequency of the piano string before increasing the
tension was
(a) 510 Hz (b) 514 Hz
(c) 516 Hz (d) 508 Hz.

2. A transverse wave is represented by y = A sin (t – kx).
For what value of the wavelength is the wave velocity equal to the
maximum particle velocity?

(a)
A
2


(b) A

(c) 2A (d) A.
3. Two strings A and B are slightly out-tune and produce beats of

frequency 5 Hz. Increasing the tension in B reduces the beat
frequency to 3 Hz. If the frequency of string A is 450 Hz, calculate
the frequency of string B.
(a) 460 Hz (b) 455 Hz
(c) 445 Hz (d) 440 Hz.

4. A resonance pipe is open at both ends and 30 cm of its length is in
resonance with an external frequency 1.1 kHz. If the speed of
sound is 330 m s–1 which harmonic is in resonance ?
(a) first (b) second
(c) third (d) fourth.

5. When two progressive waves y1 = 4 sin (2x – 6t) and y2 = 3 sin

2 6
2

x t  
  

 
 are superimposed, the amplitude of the resultant

wave is
(a) 2 (b) 3
(c) 4 (d) 5.
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6. A wave motion is described by y(x, t) = a sin (kx –  t). Then the
ratio of the maximum particle velocity to the wave velocity is

(a) a (b)
1

ka
(c) k


(d) ka.

7. Velocity of sound in air is 320 m s–1. A pipe closed at one end has
a length of 1 m. Neglecting end correction, the air column in the
pipe cannot resonate with sound of frequency
(a) 80 Hz (b) 240 Hz
(c) 320 Hz (d) 400 Hz

8. A whistle is blown from the tower of a factory with a frequency of
220 Hz. The apparent frequency of sound heard by a worker moving
towards the factory with a velocity of 30 m s–1 is (Velocity of sound
= 330 m s–1)
(a) 280 Hz (b) 200 Hz
(c) 300 Hz (d) 240 Hz

9. The frequencies of two tuning forks A and B are respectively 1.5%
more and 2.5% less than that of the tuning fork C. When A and B
are sounded together, 12 beats are produced in 1 second. The
frequency of the tuning fork C is
(a) 200 Hz (b) 240 Hz
(c) 360 Hz (d) 300 Hz

10. Two pipes are each 50 cm in length. One of them is closed at one
end while the other is open at both ends. The speed of sound in air
is 340 m s–1. The frequency at which both the pipes can resonate is
(a) 680 Hz (b) 510 Hz
(c) 85 Hz (d) none of the above.

1. A train moving towards a hill at a speed of 72 km h–1 sounds a
whistle of frequency 500 Hz. A wind is blowing from the hill at a
speed of 36 km h–1. If the speed of sound in air is 340 m s–1, the
frequency heard by a man on the hill is__________ .

2. When two sound sources of the same amplitude but of slightly
different frequencies n1 and n2 are sounded simultaneously, the
sound one hears has a frequency equal to __________ .

3. A travelling wave represented by y = A sin( t  – kx) is superimposed
on another wave represented by y = A sin ( t  + kx). The resultant
is  __________ .
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4. Two identical piano wires, kept under the same tension T have a
fundamental frequency of 600 Hz. The fractional increase in the
tension of one of the wires which will lead to occurrence of 6 beats/
s when both the wires oscillate together would be __________.

5. Sound waves travel at 350 m s–1 through warm air and at 3500 m s–1

through brass. The wavelength of a 700 Hz acoustic wave as it enters
brass from warm air __________ .

6. Tube A has both ends open while tube B has one end closed.
Otherwise they are identical. Their fundamental frequencies are
in the ratio __________ .

7. The speed of sound in a gas of density  at a pressure P is
proportional to __________ .

8. The intensity ratio of two waves at a point is 
4
9

. The amplitude
ratio will be __________ .

9. Two sound waves travel in the same direction in a medium. The
amplitude of each wave is A and the phase difference between the
two waves is 120°. The resultant amplitude will be __________ .

10. A plane progressive wave is given by
            y = 2 cos 6.284 (330t – x).
The period of the wave is __________ .

1. What is the range of frequency of audible sound?
2. Why does sound travel faster in iron than in air?
3. What kind of waves help the bats to find their way in the dark?
4. The velocity of sound in air is 332 m s–1. Find the frequency of the

fundamental note of an open pipe 50 cm long.
5. In which gas, hydrogen or oxygen, will sound have greater velocity?
6. In a resonance tube, the second resonance does not occur exactly

at three times the length at first resonance. Why?
7. The frequency of the fundamental note of a tube closed at one end

is 200 Hz. What will be the frequency of the fundamental note of a
similar tube of the same length but open at both ends?

8. A wave transmits energy. Can it transmit momentum?
9. A string has a linear density of 0.25 kg m–1 and is stretched with a

tension of 25 N. What is the velocity of the wave?
10. By how much the wave velocity  increases for 1°C rise of temperature?
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1. A tuning fork of unknown frequency gives 4 beats with a tuning
fork of frequency 310 Hz. It gives the same number of beats on
filing. Find the unknown frequency.

2. The string of a violin emits a note of 540 Hz at its correct tension.
The string is bit taut and produces 4 beats per second with a
tuning fork of frequency 540 Hz. Find the frequency of the note
emitted by this taut string.

3. The air column in a pipe closed at one end is made to vibrate in its
second overtone by a tuning fork of frequency 440 Hz. The speed of
sound in air is 330 ms–1. Find the length of the air column. [End
correction may be neglected]

4. In the following series of resonant frequencies, one frequency
(lower than 400 Hz) is missing : 150, 225, 300, 375 Hz (a) What is
the missing frequency? (b) What is the frequency of the seventh
harmonic?

5. Flash and thunder are produced simultaneously. But thunder is
heard a few second after the flash is seen. Why?

1. Densities of oxygen and nitrogen are in the ratio 16 : 14. At what
temperature the speed of sound in oxygen will be the same as at
15°C in nitrogen?

2. Calculate the speed of sound in oxygen from the following data.
The mass of 22.4 litre of oxygen at STP (T = 273 K and P = 1.0 × 105

N m–2) is 32 g, the molar heat capacity of oxygen at constant volume
is Cv = 2.5 R and that at constant pressure is Cp = 3.5 R.

3. A sound wave of frequency 400 Hz is travelling in air at a speed of
320 m s–1. Calculate the difference in phase between two points
on the wave 0.2 m apart in the direction of travel.

4. A displacement wave is represented by
y = 0.25 × 10–3 sin (500t – 0.025 x),

where y, t and x are in cm, second and metre respectively. Deduce
(i ) the amplitude (ii ) the period (iii ) the angular frequency (iv ) the
wavelength. Deduce also the amplitude of particle velocity and
particle acceleration.

5. Two harmonic waves have the same displacement amplitude of
4 × 10–5 cm and their angular frequencies are 500 rad s–1 and
5000 rad s–1. Calculate (i ) particle velocity amplitude, and
(ii ) particle acceleration amplitude.




